
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities across a broad range of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly goes beyond human cognitive abilities. AGI is thought about one of the definitions of strong AI.

Creating AGI is a primary goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and development projects across 37 countries. [4]
The timeline for attaining AGI stays a subject of ongoing argument among scientists and experts. As of 2023, some argue that it may be possible in years or decades; others preserve it might take a century or longer; a minority believe it might never ever be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually expressed concerns about the rapid progress towards AGI, suggesting it might be accomplished faster than many anticipate. [7]
There is debate on the exact definition of AGI and regarding whether contemporary big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have actually specified that mitigating the threat of human extinction presented by AGI should be a worldwide concern. [14] [15] Others find the development of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) is able to resolve one specific issue however lacks basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]
Related principles consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is a lot more typically intelligent than people, [23] while the notion of transformative AI relates to AI having a large impact on society, for instance, comparable to the agricultural or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For example, a qualified AGI is specified as an AI that exceeds 50% of knowledgeable grownups in a wide variety of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified however with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other well-known definitions, and some researchers disagree with the more popular methods. [b]
Intelligence qualities
Researchers normally hold that intelligence is needed to do all of the following: [27]
factor, use technique, fix puzzles, and make judgments under uncertainty
represent understanding, consisting of good sense knowledge
strategy
find out
- communicate in natural language
- if required, integrate these abilities in completion of any provided objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about extra qualities such as imagination (the capability to form novel mental images and principles) [28] and autonomy. [29]
Computer-based systems that show numerous of these abilities exist (e.g. see computational creativity, automated reasoning, choice support system, robot, evolutionary computation, intelligent agent). There is debate about whether modern AI systems possess them to an appropriate degree.
Physical characteristics
Other abilities are thought about desirable in smart systems, as they may affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. move and manipulate items, change location to explore, and so on).
This includes the capability to identify and react to danger. [31]
Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and control things, change location to check out, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language designs (LLMs) may currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system is sufficient, supplied it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has never ever been proscribed a specific physical personification and hence does not require a capability for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to verify human-level AGI have actually been considered, including: [33] [34]
The concept of the test is that the maker needs to attempt and pretend to be a guy, by addressing concerns put to it, and it will just pass if the pretence is reasonably persuading. A substantial portion of a jury, who need to not be expert about devices, need to be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would need to carry out AGI, because the service is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of problems that have been conjectured to require basic intelligence to fix along with human beings. Examples consist of computer system vision, natural language understanding, and handling unexpected situations while solving any real-world problem. [48] Even a specific task like translation requires a device to check out and write in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully replicate the author's original intent (social intelligence). All of these issues need to be fixed all at once in order to reach human-level maker performance.
However, a lot of these tasks can now be performed by modern large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of standards for reading comprehension and visual thinking. [49]
History
Classical AI

Modern AI research study began in the mid-1950s. [50] The very first generation of AI scientists were convinced that artificial basic intelligence was possible and that it would exist in just a few decades. [51] AI pioneer Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a man can do." [52]
Their predictions were the inspiration for Stanley Kubrick and freechat.mytakeonit.org Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they could develop by the year 2001. AI leader Marvin Minsky was an expert [53] on the project of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the problem of creating 'synthetic intelligence' will substantially be resolved". [54]
Several classical AI projects, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being obvious that scientists had grossly ignored the difficulty of the job. Funding agencies ended up being hesitant of AGI and put researchers under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "carry on a casual conversation". [58] In action to this and the success of specialist systems, both market and government pumped cash into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in twenty years, AI scientists who predicted the impending accomplishment of AGI had actually been misinterpreted. By the 1990s, AI researchers had a track record for making vain promises. They became unwilling to make forecasts at all [d] and avoided mention of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained business success and academic respectability by focusing on particular sub-problems where AI can produce proven results and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation industry, and research in this vein is greatly moneyed in both academic community and industry. As of 2018 [update], advancement in this field was thought about an emerging pattern, and a mature stage was expected to be reached in more than 10 years. [64]
At the turn of the century, many mainstream AI scientists [65] hoped that strong AI could be established by integrating programs that solve various sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up route to synthetic intelligence will one day satisfy the traditional top-down path majority way, all set to supply the real-world proficiency and the commonsense knowledge that has actually been so frustratingly evasive in reasoning programs. Fully smart machines will result when the metaphorical golden spike is driven uniting the two efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is truly just one practical path from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, given that it appears arriving would simply amount to uprooting our symbols from their intrinsic significances (consequently simply decreasing ourselves to the functional equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research
The term "synthetic basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to satisfy goals in a vast array of environments". [68] This kind of AGI, identified by the capability to increase a mathematical definition of intelligence rather than show human-like behaviour, [69] was likewise called universal artificial intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a variety of visitor lecturers.
As of 2023 [upgrade], a small number of computer system scientists are active in AGI research, and lots of contribute to a series of AGI conferences. However, increasingly more researchers have an interest in open-ended learning, [76] [77] which is the idea of enabling AI to constantly find out and innovate like humans do.
Feasibility
Since 2023, the advancement and potential achievement of AGI remains a subject of extreme argument within the AI neighborhood. While standard agreement held that AGI was a remote objective, recent improvements have actually led some researchers and market figures to declare that early kinds of AGI might already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and essentially unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern-day computing and human-level expert system is as broad as the gulf between present area flight and practical faster-than-light spaceflight. [80]
A further difficulty is the absence of clearness in specifying what intelligence involves. Does it require consciousness? Must it show the ability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence need explicitly duplicating the brain and its specific professors? Does it require emotions? [81]
Most AI scientists think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that the present level of progress is such that a date can not properly be predicted. [84] AI professionals' views on the expediency of AGI wax and wane. Four surveys carried out in 2012 and 2013 suggested that the typical estimate amongst professionals for when they would be 50% positive AGI would show up was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% answered with "never ever" when asked the same question but with a 90% self-confidence rather. [85] [86] Further current AGI progress considerations can be discovered above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong bias towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we think that it could fairly be seen as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 surpasses 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of basic intelligence has actually currently been accomplished with frontier designs. They wrote that hesitation to this view comes from four primary factors: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 also marked the emergence of big multimodal designs (big language designs capable of processing or generating multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "spend more time believing before they respond". According to Mira Murati, this capability to think before responding represents a brand-new, additional paradigm. It enhances model outputs by investing more computing power when creating the response, whereas the design scaling paradigm enhances outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, claimed in 2024 that the company had actually attained AGI, specifying, "In my viewpoint, we have actually already accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than most people at the majority of jobs." He likewise resolved criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the scientific technique of observing, hypothesizing, and verifying. These declarations have actually triggered dispute, as they count on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show amazing adaptability, they may not completely satisfy this requirement. Notably, Kazemi's remarks came soon after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the business's tactical intentions. [95]
Timescales
Progress in expert system has actually traditionally gone through durations of quick progress separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce space for more development. [82] [98] [99] For example, the computer hardware offered in the twentieth century was not sufficient to carry out deep knowing, which requires large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that estimates of the time required before a really flexible AGI is built differ from 10 years to over a century. As of 2007 [upgrade], the consensus in the AGI research neighborhood appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have provided a large variety of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions discovered a bias towards anticipating that the onset of AGI would occur within 16-26 years for modern-day and historic predictions alike. That paper has actually been criticized for how it classified opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional approach used a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the existing deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old child in very first grade. An adult concerns about 100 typically. Similar tests were carried out in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in performing numerous diverse jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in carrying out more than 600 different tasks. [110]
In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, competing that it displayed more basic intelligence than previous AI models and demonstrated human-level performance in jobs covering several domains, such as mathematics, coding, and law. This research study stimulated a dispute on whether GPT-4 could be thought about an early, insufficient variation of artificial general intelligence, highlighting the requirement for additional exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The idea that this stuff could really get smarter than individuals - a few individuals believed that, [...] But the majority of people believed it was method off. And I thought it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has actually been quite extraordinary", and that he sees no reason that it would decrease, anticipating AGI within a decade or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test a minimum of along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can serve as an alternative method. With entire brain simulation, a brain design is built by scanning and mapping a biological brain in detail, and then copying and imitating it on a computer system or another computational gadget. The simulation model must be sufficiently devoted to the initial, so that it acts in virtually the same method as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has been discussed in artificial intelligence research study [103] as a method to strong AI. Neuroimaging technologies that might deliver the necessary in-depth understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of enough quality will appear on a similar timescale to the computing power needed to imitate it.
Early approximates
For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, given the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by adulthood. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various estimates for the hardware needed to equate to the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "computation" was comparable to one "floating-point operation" - a measure utilized to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He utilized this figure to predict the essential hardware would be offered sometime between 2015 and 2025, if the rapid development in computer system power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially in-depth and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial neuron design assumed by Kurzweil and used in numerous current artificial neural network executions is basic compared to biological nerve cells. A brain simulation would likely have to record the in-depth cellular behaviour of biological neurons, currently comprehended only in broad overview. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are understood to contribute in cognitive processes. [125]
An essential criticism of the simulated brain technique originates from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is required to ground significance. [126] [127] If this theory is right, any fully functional brain design will require to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unidentified whether this would suffice.
Philosophical perspective
"Strong AI" as defined in philosophy
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (only) imitate it believes and has a mind and awareness.
The first one he called "strong" since it makes a more powerful declaration: it presumes something unique has actually occurred to the device that exceeds those abilities that we can test. The behaviour of a "weak AI" device would be exactly identical to a "strong AI" maker, however the latter would also have subjective conscious experience. This usage is likewise common in academic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no need to know if it actually has mind - certainly, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have various significances, and some elements play significant functions in sci-fi and the ethics of synthetic intelligence:
Sentience (or "sensational consciousness"): The ability to "feel" perceptions or emotions subjectively, instead of the ability to factor about perceptions. Some philosophers, such as David Chalmers, use the term "awareness" to refer exclusively to sensational consciousness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience arises is called the hard problem of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not mindful, then it doesn't seem like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually attained life, though this claim was widely contested by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, particularly to be knowingly familiar with one's own ideas. This is opposed to merely being the "subject of one's thought"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the very same way it represents everything else)-but this is not what people usually suggest when they use the term "self-awareness". [g]
These traits have an ethical dimension. AI sentience would trigger concerns of well-being and legal protection, similarly to animals. [136] Other elements of awareness associated to cognitive abilities are likewise pertinent to the concept of AI rights. [137] Finding out how to integrate innovative AI with existing legal and social frameworks is an emergent problem. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such objectives, AGI might assist mitigate numerous problems worldwide such as appetite, poverty and health issue. [139]
AGI might improve performance and effectiveness in many jobs. For example, in public health, AGI might accelerate medical research, significantly versus cancer. [140] It could take care of the senior, [141] and democratize access to rapid, premium medical diagnostics. It could offer fun, cheap and tailored education. [141] The need to work to subsist might end up being obsolete if the wealth produced is appropriately redistributed. [141] [142] This also raises the question of the place of human beings in a radically automated society.
AGI might also assist to make reasonable choices, and to anticipate and prevent disasters. It could likewise help to profit of potentially disastrous technologies such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's main goal is to prevent existential disasters such as human extinction (which might be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it could take steps to drastically lower the risks [143] while decreasing the effect of these steps on our lifestyle.
Risks
Existential dangers
AGI might represent numerous types of existential risk, which are dangers that threaten "the early termination of Earth-originating smart life or the long-term and extreme damage of its potential for preferable future advancement". [145] The threat of human termination from AGI has actually been the topic of lots of debates, but there is likewise the possibility that the development of AGI would lead to a permanently flawed future. Notably, it could be utilized to spread and protect the set of values of whoever develops it. If humankind still has ethical blind areas comparable to slavery in the past, AGI might irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI might assist in mass monitoring and brainwashing, which could be utilized to create a stable repressive around the world totalitarian routine. [147] [148] There is likewise a danger for the devices themselves. If machines that are sentient or otherwise worthy of moral factor to consider are mass produced in the future, engaging in a civilizational course that forever ignores their welfare and interests could be an existential catastrophe. [149] [150] Considering just how much AGI could improve humankind's future and help lower other existential dangers, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential risk for human beings, which this danger needs more attention, is questionable but has been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, facing possible futures of enormous benefits and dangers, the professionals are certainly doing everything possible to guarantee the very best result, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll get here in a couple of years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The potential fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The comparison specifies that higher intelligence allowed humankind to control gorillas, which are now susceptible in methods that they might not have expected. As an outcome, the gorilla has become an endangered species, not out of malice, but simply as a security damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humankind which we must beware not to anthropomorphize them and interpret their intents as we would for human beings. He said that people won't be "wise adequate to develop super-intelligent machines, yet extremely dumb to the point of giving it moronic goals without any safeguards". [155] On the other side, the principle of instrumental convergence suggests that practically whatever their objectives, smart representatives will have reasons to try to endure and obtain more power as intermediary actions to attaining these goals. Which this does not need having feelings. [156]
Many scholars who are concerned about existential risk advocate for more research study into fixing the "control problem" to address the question: what types of safeguards, algorithms, or architectures can programmers carry out to increase the probability that their recursively-improving AI would continue to behave in a friendly, instead of devastating, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could lead to a race to the bottom of safety precautions in order to release items before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can position existential threat likewise has detractors. Skeptics typically state that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other issues connected to current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of individuals outside of the innovation industry, existing chatbots and LLMs are already perceived as though they were AGI, causing additional misunderstanding and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an unreasonable belief in a supreme God. [163] Some scientists think that the interaction projects on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and researchers, released a joint statement asserting that "Mitigating the danger of extinction from AI need to be a worldwide priority together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of employees might see at least 50% of their jobs affected". [166] [167] They consider workplace employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, capability to make choices, to interface with other computer system tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or most individuals can wind up badly bad if the machine-owners successfully lobby against wealth redistribution. Up until now, the pattern appears to be towards the 2nd option, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal basic earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI effect
AI security - Research location on making AI safe and helpful
AI positioning - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of device knowing
BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General video game playing - Ability of synthetic intelligence to play various video games
Generative synthetic intelligence - AI system capable of producing material in reaction to triggers
Human Brain Project - Scientific research study task
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task knowing - Solving numerous maker discovering tasks at the very same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of synthetic intelligence - Overview of and topical guide to synthetic intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer learning - Machine learning method.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specially developed and enhanced for expert system.
Weak artificial intelligence - Form of synthetic intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the article Chinese space.
^ AI founder John McCarthy composes: "we can not yet characterize in general what kinds of computational treatments we wish to call smart. " [26] (For a conversation of some meanings of intelligence utilized by synthetic intelligence researchers, see philosophy of expert system.).
^ The Lighthill report specifically criticized AI's "grand objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became identified to money only "mission-oriented direct research, rather than fundamental undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a terrific relief to the rest of the employees in AI if the inventors of new general formalisms would express their hopes in a more guarded kind than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As specified in a standard AI book: "The assertion that machines might potentially act smartly (or, maybe better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are in fact believing (rather than replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that artificial basic intelligence advantages all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020.
^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI leader Geoffrey Hinton gives up Google and alerts of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real danger is not AI itself however the method we deploy it.
^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential threats to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that mankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI ought to be a worldwide priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of danger of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing makers that can outthink us in basic methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no reason to fear AI as an existential hazard.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the full series of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on everybody to make sure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent characteristics is based on the topics covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of challenging examinations both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers avoided the term artificial intelligence for fear of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite development in machine intelligence, artificial general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of professional viewpoint. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of